Bridgman's thermodynamic equations

Bridgman's thermodynamic equations

In thermodynamics, Bridgman's thermodynamic equations are a basic set of thermodynamic equations, derived using a method of generating a large number of thermodynamic identities involving a number of thermodynamic quantities. The equations are named after the American physicist Percy Williams Bridgman. (See also the exact differential article for general differential relationships).

The extensive variables of the system are fundamental. Only the entropy "S" , the volume "V" and the four most common thermodynamic potentials will be considered. The four most common thermodynamic potentials are:

:

The first derivatives of the internal energy with respect to its (extensive) natural variables "S" and "V" yields the intensive parameters of the system - The pressure "P" and the temperature "T" . For a simple system in which the particle numbers are constant, the second derivatives of the thermodynamic potentials can all be expressed in terms of only three material properties

:

Bridgman's equations are a series of relationships between all of the above quantities.

Introduction

Many thermodynamic equations are expressed in terms of partial derivatives. For example, the expression for the heat capacity at constant pressure is:

:C_P=left(frac{partial H}{partial T} ight)_P

which is the partial derivative of the enthalpy with respect to temperature while holding pressure constant. We may write this equation as:

:C_P=frac{(partial H)_P}{(partial T)_P}

This method of rewriting the partial derivative was described by Bridgman (and also Lewis & Randall), and allows the use of the following collection of expressions to express many thermodynamic equations. For example from the equations below we have:

:(partial H)_P=C_Pand:(partial T)_P=1Dividing, we recover the proper expression for CP.

The following summary restates various partial terms in terms of the thermodyamic potentials, the state parameters S, T, P, V, and the following three material properties which are easily measured experimentally.

:left(frac{partial V}{partial T} ight)_P = alpha V:left(frac{partial V}{partial P} ight)_T = -eta_T V:left(frac{partial H}{partial T} ight)_P = C_P = c_P N

Bridgman's thermodynamic equations

Note that Lewis and Randall use F and E for the Gibbs energy and internal energy, respectively, rather than G and U which are used in this article.

: (partial T)_P=-(partial P)_T=1

: (partial V)_P=-(partial P)_V=left(frac{partial V}{partial T} ight)_P

: (partial S)_P=-(partial P)_S=frac{C_p}{T}

: (partial U)_P=-(partial P)_U=C_P-Pleft(frac{partial V}{partial T} ight)_P

: (partial H)_P=-(partial P)_H=C_P

: (partial G)_P=-(partial P)_G=-S

: (partial A)_P=-(partial P)_A=-S-Pleft(frac{partial V}{partial T} ight)_P

: (partial V)_T=-(partial T)_V=-left(frac{partial V}{partial P} ight)_T

: (partial S)_T=-(partial T)_S=left(frac{partial V}{partial T} ight)_P

: (partial U)_T=-(partial T)_U=Tleft(frac{partial V}{partial T} ight)_P+Pleft(frac{partial V}{partial P} ight)_T

: (partial H)_T=-(partial T)_H=-V+Tleft(frac{partial V}{partial T} ight)_P

: (partial G)_T=-(partial T)_G=-V

: (partial A)_T=-(partial T)_A=Pleft(frac{partial V}{partial P} ight)_T

: (partial S)_V=-(partial V)_S=frac{C_P}{T}left(frac{partial V}{partial P} ight)_T+left(frac{partial V}{partial T} ight)_P^2

: (partial U)_V=-(partial V)_U=C_Pleft(frac{partial V}{partial P} ight)_T+Tleft(frac{partial V}{partial T} ight)_P^2

: (partial H)_V=-(partial V)_H=C_Pleft(frac{partial V}{partial P} ight)_T+Tleft(frac{partial V}{partial T} ight)_P^2-Vleft(frac{partial V}{partial T} ight)_P

: (partial G)_V=-(partial V)_G=-Vleft(frac{partial V}{partial T} ight)_P-Sleft(frac{partial V}{partial P} ight)_T

: (partial A)_V=-(partial V)_A=-Sleft(frac{partial V}{partial P} ight)_T

: (partial U)_S=-(partial S)_U=frac{PC_P}{T}left(frac{partial V}{partial P} ight)_T+Pleft(frac{partial V}{partial T} ight)_P^2

: (partial H)_S=-(partial S)_H=-frac{VC_P}{T}

: (partial G)_S=-(partial S)_G=-frac{VC_P}{T}+Sleft(frac{partial V}{partial T} ight)_P

: (partial A)_S=-(partial S)_A=frac{PC_P}{T}left(frac{partial V}{partial P} ight)_T+Pleft(frac{partial V}{partial T} ight)_P^2+Sleft(frac{partial V}{partial T} ight)_P

: (partial H)_U=-(partial U)_H=-VC_P+PVleft(frac{partial V}{partial T} ight)_P-PC_Pleft(frac{partial V}{partial P} ight)_T-PTleft(frac{partial V}{partial T} ight)_P^2

: (partial G)_U=-(partial U)_G=-VC_P+PVleft(frac{partial V}{partial T} ight)_P+STleft(frac{partial V}{partial T} ight)_P+SPleft(frac{partial V}{partial P} ight)_T

: (partial A)_U=-(partial U)_A=P(C_P+S)left(frac{partial V}{partial P} ight)_T+PTleft(frac{partial V}{partial T} ight)_P^2+STleft(frac{partial V}{partial T} ight)_P

: (partial G)_H=-(partial H)_G=-V(C_P+S)+TSleft(frac{partial V}{partial T} ight)_P

: (partial A)_H=-(partial H)_A=-left [S+Pleft(frac{partial V}{partial T} ight)_P ight] left [V-Tleft(frac{partial V}{partial T} ight)_P ight] +PC_Pleft(frac{partial V}{partial P} ight)_T

: (partial A)_G=-(partial G)_A=-Sleft [V+Pleft(frac{partial V}{partial P} ight)_T ight] -PVleft(frac{partial V}{partial T} ight)_P

ee also

* Table of thermodynamic equations

References

*cite journal | last = Bridgman | first = P.W. | authorlink = Percy Williams Bridgman
title=A Complete Collection of Thermodynamic Formulas
date = 1914 | journal = Phys. Rev. | volume =3 | issue = 4 | pages = 273–281 | url = http://prola.aps.org/abstract/PR/v3/i4/p273_1
doi=10.1103/PhysRev.3.273
format=abstract

*cite book |last=Lewis |first=G.N. |authorlink=Gilbert N. Lewis
coauthors=Randall, M.
title=Thermodynamics |year=1961 |publisher=McGraw-Hill Book Company
location=New York |id= |edition=2nd Edition

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Table of thermodynamic equations — For more elaboration on these equations see: thermodynamic equations. The following page is a concise list of common thermodynamic equations and quantities:Variables{| class= wikitable style= width: 25em; + Constants !style= width:3em; | kB… …   Wikipedia

  • Percy Williams Bridgman — Born 21 April 1882(1882 04 21) Cambridge, Massachusetts …   Wikipedia

  • Exact differential — In mathematics, a differential dQ is said to be exact , as contrasted with an inexact differential, if the differentiable function Q exists. However, if dQ is arbitrarily chosen, a corresponding Q might not exist. OverviewIn one dimension, a… …   Wikipedia

  • Thermodynamics — Annotated color version of the original 1824 Carnot heat engine showing the hot body (boiler), working body (system, steam), and cold body (water), the letters labeled according to the stopping points in Carnot cycle …   Wikipedia

  • Earth Sciences — ▪ 2009 Introduction Geology and Geochemistry       The theme of the 33rd International Geological Congress, which was held in Norway in August 2008, was “Earth System Science: Foundation for Sustainable Development.” It was attended by nearly… …   Universalium

  • Second law of thermodynamics — The second law of thermodynamics is an expression of the universal law of increasing entropy, stating that the entropy of an isolated system which is not in equilibrium will tend to increase over time, approaching a maximum value at… …   Wikipedia

  • Фазовая диаграмма воды — Основная статья: Вода Фазовая диаграмма воды …   Википедия

  • Louis de Broglie — Born 15 August 1892(1892 08 15) Dieppe, France …   Wikipedia

  • Max von Laue — Laue in 1929 Born Max Theo …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”