Three-pass protocol

Three-pass protocol

In cryptography, the three-pass protocol for sending messages is a framework which allows one party to securely send a message to a second party without the need to exchange or distribute encryption keys. This message protocol should not be confused with various other algorithms which use 3 passes for authentication.

It is called the three-pass protocol because the sender and the receiver exchange three encrypted messages. The first three-pass protocol was developed by Adi Shamir circa 1980, and is described in more detail in a later section. The basic concept of the Three-Pass Protocol is that each party has a private encryption key and a private decryption key. The two parties use their keys independently, first to encrypt the message, and then to decrypt the message.

The protocol uses an encryption function E and a decryption function D. The encryption function uses an encryption key e to change a plaintext message m into an encrypted message, or ciphertext, E(e,m). Corresponding to each encryption key e there is a decryption key d which allows the message to be recovered using the decryption function, D(d,E(e,m))=m. Sometimes the encryption function and decryption function are the same.

In order for the encryption function and decryption function to be suitable for the Three-Pass Protocol they must have the property that for any message m, any encryption key e with corresponding decryption key d and any independent encryption key k,  D(d,E(k,E(e,m))) = E(k,m). In other words, it must be possible to remove the first encryption with the key e even though a second encryption with the key k has been performed. This will always be possible with a commutative encryption. A commutative encryption is an encryption that is order-independent, i.e. it satisfies E(a,E(b,m))=E(b,E(a,m)) for all encryption keys a and b and all messages m. Commutative encryptions satisfy D(d,E(k,E(e,m))) = D(d,E(e,E(k,m))) = E(k,m).

The Three-Pass Protocol works as follows:

  1. The sender chooses a private encryption key s and a corresponding decryption key t. The sender encrypts the message m with the key s and sends the encrypted message E(s,m) to the receiver.
  2. The receiver chooses a private encryption key r and a corresponding decryption key q and super-encrypts the first message E(s,m) with the key r and sends the doubly encrypted message E(r,E(s,m)) back to the sender.
  3. The sender decrypts the second message with the key t. Because of the commutativity property described above D(t,E(r,E(s,m)))=E(r,m) which is the message encrypted with only the receiver's private key. The sender sends this to the receiver.

The receiver can now decrypt the message using the key q, namely D(q,E(r,m))=m the original message.

Notice that all of the operations involving the sender's private keys s and t are performed by the sender, and all of the operations involving the receiver's private keys r and q are performed by the receiver, so that neither party needs to know the other party's keys.

Contents

Shamir three-pass protocol

The first Three-Pass Protocol was the Shamir Three-Pass Protocol developed circa 1980. It is also called the Shamir No-Key Protocol because the sender and the receiver do not exchange any keys, however the protocol requires the sender and receiver to have two private keys for encrypting and decrypting messages. The Shamir algorithm uses exponentiation modulo a large prime as both the encryption and decryption functions. That is E(e,m) = me mod p and D(d,m) = md mod p where p is a large prime. For any encryption exponent e in the range 1..p-1 with gcd(e,p-1) = 1. The corresponding decryption exponent d is chosen such that de ≡ 1 (mod p-1). It follows from Fermat's Little Theorem that D(d,E(e,m)) = mde mod p = m.

The Shamir protocol has the desired commutativity property since E(a,E(b,m)) = mab mod p = mba mod p = E(b,E(a,m)).

Massey-Omura cryptosystem

The Massey-Omura Cryptosystem was proposed by James Massey and Jim K. Omura in 1982 as a possible improvement over the Shamir protocol. The Massey-Omura method uses exponentiation in the Galois field GF(2n) as both the encryption and decryption functions. That is E(e,m)=me and D(d,m)=md where the calculations are carried out in the Galois field. For any encryption exponent e with 0<e<2n-1 and gcd(e,2n-1)=1 the corresponding decryption exponent is d such that de ≡ 1 (mod 2n-1). Since the multiplicative group of the Galois field GF(2n) has order 2n-1 Lagrange's theorem implies that mde=m for all m in GF(2n)* .

Each element of the Galois field GF(2n) is represented as a binary vector over a normal basis in which each basis vector is the square of the preceding one. That is, the basis vectors are v1, v2, v4, v8, ... where v is a field element of maximum order. By using this representation, exponentiations by powers of 2 can be accomplished by cyclic shifts. This means that raising m to an arbitrary power can be accomplished with at most n shifts and n multiplications. Moreover, several multiplications can be performed in parallel. This allows faster hardware realizations at the cost of having to implement several multipliers.

Security

A necessary condition for a three-pass algorithm to be secure is that an attacker cannot determine any information about the message m from the three transmitted messages E(s,m), E(r,E(s,m)) and E(r,m).

For the encryption functions used in the Shamir algorithm and the Massey-Omura algorithm described above, the security relies on the difficulty of computing discrete logarithms in a finite field. If an attacker could compute discrete logarithms in GF(p) for the Shamir method or GF(2n) for the Massey-Omura method then the protocol could be broken. The key s could be computed from the messages mr and mrs. When s is known, it is easy to compute the decryption exponent t. Then the attacker could compute m by raising the intercepted message ms to the t power. K. Sakurai and H. Shizuya show that under certain assumptions breaking Massey-Omura cryptosystem is equivalent to the Diffie-Hellman assumption.

Authentication

The three-pass protocol as described above does not provide any authentication. Hence, without any additional authentication the protocol is susceptible to a man-in-the-middle attack if the opponent has the ability to create false messages, or to intercept and replace the genuine transmitted messages.

References

  • U.S. Patent 4,567,600, U.S. patent on the Massey-Omura cryptosystem
  • Alan G. Konheim (1981) Cryptography: A Primer 346-7.
  • A. Menezes, P. VanOorschot, S. Vanstone (1996) Handbook of Applied Cryptography 500, 642.
  • K. Sakurai and H. Shizuya (1998) "A Structural Comparison of the Computational Difficulty of Breaking Discrete Log Cryptosystems" Journal of Cryptology 11: 29-43.



Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Oakley protocol — The Oakley Key Determination Protocol is a key agreement protocol that allows authenticated parties to exchange keying material across an insecure connection using the Diffie Hellman key exchange algorithm. The protocol was proposed by H. Orman… …   Wikipedia

  • Protocol stack — The protocol stack is an implementation of a computer networking protocol suite. The terms are often used interchangeably. Strictly speaking, the suite is the definition of the protocols, and the stack is the software implementation of them.[1]… …   Wikipedia

  • Aggregate Level Simulation Protocol — The Aggregate Level Simulation Protocol (ALSP) is a protocol and supporting software that enables simulations to interoperate with one another. Replaced by the High Level Architecture (simulation) (HLA), it was used by the US military to link… …   Wikipedia

  • Simple Network Management Protocol — (SNMP) forms part of the internet protocol suite as defined by the Internet Engineering Task Force (IETF). SNMP is used in network management systems to monitor network attached devices for conditions that warrant administrative attention. It… …   Wikipedia

  • The Fourth Protocol — Infobox Book name = The Fourth Protocol title orig = translator = image caption = author = Frederick Forsyth illustrator = cover artist = country = United Kingdom language = English series = subject = genre = Thriller novel publisher = Hutchinson …   Wikipedia

  • MQV — (Menezes–Qu–Vanstone) is an authenticated protocol for key agreement based on the Diffie–Hellman scheme. Like other authenticated Diffie Hellman schemes, MQV provides protection against an active attacker. The protocol can be modified to work in… …   Wikipedia

  • Public-key cryptography — In an asymmetric key encryption scheme, anyone can encrypt messages using the public key, but only the holder of the paired private key can decrypt. Security depends on the secrecy of that private key …   Wikipedia

  • Diffie–Hellman key exchange — (D–H)[nb 1] is a specific method of exchanging keys. It is one of the earliest practical examples of key exchange implemented within the field of cryptography. The Diffie–Hellman key exchange method allows two parties that have no prior knowledge …   Wikipedia

  • Digital signature — This article is about secure cryptographic signatures. For simple signatures in digital form, see Electronic signature. A digital signature or digital signature scheme is a mathematical scheme for demonstrating the authenticity of a digital… …   Wikipedia

  • Distributed key generation — For some protocols no party should be in the sole possession of the secret key. Rather, during distributed key generation every party obtains a share of the key. A threshold of the participating parties need to cooperate in order to achieve a… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”