Metamorphic facies

Metamorphic facies

Metamorphic facies blanc.svg

Eclogite
Blueschist
Greenschist
Granulite
Amphibolite
Hornfels
Sanidinite
T (°C)
0
100
200
300
400
500
600
700
800
900
1000
0
2
4
6
8
10
12
14
16
18
20
Diagram showing metamorphic facies in pressure-temperature space. The domain of the
graph corresponds to circumstances within the Earth's crust and upper mantle.

The metamorphic facies are groups of mineral compositions in metamorphic rocks, that are typical for a certain field in pressure-temperature space. Rocks which contain certain minerals can therefore be linked to certain tectonic settings.

Contents

Historic definition

The name facies was first used for specific sedimentary environments in sedimentary rocks by Swiss geologist Amanz Gressly in 1838. Analogous with these sedimentary facies a number of metamorphic facies were proposed in 1921 by Finnish petrologist Pentti Eskola. Eskola's classification was refined in the 1970s by New-Zealand geologist Francis John Turner.

Triangular diagrams showing the aluminium (A), calcium (C) and iron (F) content of the main phases (dark dots) in metamorphic rocks in various facies. Thin grey lines are stable phase equilibria.
Triangular diagrams showing the aluminium (A), iron (F) and magnesium (M) content of the main phases (dark dots and, when the composition can vary, stripes). Thin grey lines represent equilibria between phases.

Underlying principles

The different metamorphic facies are defined by the mineralogical composition of a rock. When the temperature or pressure in a rock body change, the rock can cross into a different facies and some minerals become stable while others become unstable or metastable. Whether minerals really react depends on the reaction kinetics, the activation energy of the reaction and how much fluid is present in the rock.

The minerals in a metamorphic rock and their age relations can be studied by optical microscopy or Scanning Electron Microscopy of thin sections of the rock. Apart from the metamorphic facies of a rock, a whole terrane can be described by the abbreviations LT, MT, HT, LP, MP, HP (from low, medium or high; pressure or temperature). Since the 1980s the term UHP (ultra high pressure) is used for rocks that saw extreme pressures.

Which minerals grow in a rock is also dependent of the original composition of the protolith (the original rock before metamorphosis). Carbonate rocks have a different composition from say a basalt lava, the minerals that can grow in them are different too. Therefore a metapsammite and a metapelite will have different mineralogical compositions even though they were in the same metamorphic facies.

Index minerals

Every metamorphic facies has some index minerals by which it can be recognized. That does not mean these minerals will necessarily be visible with the naked eye, or even exist in the rock; when the rock did not have the right chemical composition they will not grow.

Very typical index minerals are the polymorphs of aluminosilicate (Al2SiO5, all are nesosilicates). Andalusite is stable at low pressure, kyanite is stable at high pressure but relatively low temperature and sillimanite is stable at high temperature.

Metamorphic facies and their mineral assemblages

Zeolite facies (LP/LT)

The zeolite facies is the metamorphic facies with the lowest metamorphic grade. At lower temperature and pressure processes in the rock are called diagenesis. The facies is named for zeolites, strongly hydrated tectosilicates. It can have the following mineral assemblages:

In meta-igneous rocks and greywackes:

In metapelites:

Prehnite-pumpellyite-facies (LP/LT)

The prehnite-pumpellyite facies is a little higher in pressure and temperature than the zeolite facies. It is named for the minerals prehnite (a Ca-Al-phyllosilicate) and pumpellyite (a sorosilicate). The prehnite-pumpellyite is characterized by the mineral assemblages:

In meta-igneous rocks and greywackes:

In metapelites:

Greenschist facies (MP/MT)

The greenschist facies is at medium pressure and temperature. The facies is named for the typical schistose texture of the rocks and green colour of the minerals chlorite, epidote and actinolite. Characteristic mineral assemblages are:

In metabasites:

In metagreywackes:

In metapelites:

In Si-rich dolostones:

Amphibolite-facies (MP/MT-HT)

The amphibolite facies is a facies of medium pressure and average to high temperature. It is named after amphiboles that form under such circumstances. It has the following mineral assemblages:

In metabasites:

In metapelites:

In Si-dolostones:

Granulite facies (MP/HT)

The granulite facies is the highest grade of metamorphism at medium pressure. The depth at which it occurs is not constant. A characteristic mineral for this facies and the pyroxene-hornblende facies is orthopyroxene. The granulite facies is characterized by the following mineral assemblages:

In metabasites:

In metapelites:

Blueschist facies (MP-HP/LT)

The blueschist facies is at relatively low temperature but high pressure, such as occurs in rocks in a subduction zone. The facies is named after the schistose character of the rocks and the blue minerals glaucophane and lawsonite. The blueschist facies forms the following mineral assemblages:

In metabasites:

In metagreywackes:

In metapelites:

In carbonate-rocks (marbles):

Eclogite facies (HP/HT)

The eclogite facies is the facies at the highest pressure and high temperature. It is named for the metabasic rock eclogite. The eclogite facies had the mineral assemblages:

In metabasites:

In metagranodiorite:

In metapelites:

Albite-epidote-hornfels facies (LP/LT-MT)

The albite-epidote-hornfels facies is a facies at low pressure and relatively low temperatures. It is named for the two minerals albite and epidote, though they are stable in more facies. Hornfels is a rock formed in contact metamorphism, a process that characteristically involves high temperatures but low pressures/depths. This facies is characterized by the following minerals:

In metabasites:

In metapelites:

Hornblende-hornfels facies (LP/MT)

The hornblende-hornfels facies is a facies with the same low pressures but slightly higher temperatures as the albite-epidote facies. Though it is named for the mineral hornblende, the appearance of that mineral is not constrained to this facies. The hornblende-hornfels facies has the following mineral assemblages:

In metabasites:

In metapelites:

In K2O-poor sediments or meta-igneous rocks:

In Si-rich dolostones:

Pyroxene-hornfels facies (LP/MT-HT)

The pyroxene-hornfels facies is the contact-metamorphic facies with the highest temperatures and is, like the granulite facies, characterized by the mineral orthopyroxene. It is characterized by the following mineral assemblages:

In metabasites:

In metapelites:

(If the temperature is below 750 there will be andalusite instead of sillimanite)

In carbonate rocks:

Sanidinite facies (LP/HT)

The sanidinite facies is a rare facies of extremely high temperatures and low pressure. It can only be reached under certain contact-metamorphic circumstances. Due to the high temperature the rock experiences partial melting and glass is formed. This facies is named for the mineral sanidine. It is characterized by the following mineral assemblages:

In metapelites:

In carbonates:

References

  • Phillpots, Anthony R., 1990: Principles of Igneous and Metamorphic Petrology
  • Duff, P. McL. D., 1996; Holmes' Principles of Physical Geology
  • Visser, W.A., 1980; Geological Nomenclature
  • Metamorphic facies by Dave Waters

See also


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • metamorphic facies — Geol. a group of metamorphic rock units characterized by particular mineralogic associations. * * * …   Universalium

  • metamorphic facies — Geol. a group of metamorphic rock units characterized by particular mineralogic associations …   Useful english dictionary

  • FACIÈS MINÉRALOGIQUE D’ESKOLA — «Un faciès minéralogique est l’ensemble des roches formées en conditions de pression et de température si semblables qu’une même composition chimique fournisse le même ensemble de minéraux (paragenèse minéralogique) quel que soit le mode de… …   Encyclopédie Universelle

  • Metamorphic rock — Metamorphic redirects here. For other uses, see Metamorphic (disambiguation). Quartzite, a form of metamorphic rock, from the Museum of Geology at University of Tartu collection. Metamorphic rock is the transformation of an existing rock type,… …   Wikipedia

  • metamorphic rock — Any of a class of rocks that result from the alteration of preexisting rocks in response to changing geological conditions, including variations in temperature, pressure, and mechanical stress. The preexisting rocks may be igneous, sedimentary,… …   Universalium

  • Metamorphic zone — Schematic map of a terrane with an increasing metamorphic grade. There are two folded lithologies: quartzite (originally sandy sediment) and pelite (originally clayy sediment). The index minerals can only grow in the pelite. The highest indicated …   Wikipedia

  • Facies — The term Facies can also refer to distinctive facial expressions associated with conditions such as Williams syndrome. In geology, facies are a body of rock with specified characteristics. [Reading (1996)] Ideally, a facies is a distinctive rock… …   Wikipedia

  • facies — /fay shee eez , sheez/, n., pl. facies. 1. general appearance, as of an animal or vegetable group. 2. Geol. the appearance and characteristics of a sedimentary deposit, esp. as they reflect the conditions and environment of deposition and serve… …   Universalium

  • Metamorphic core complex — Metamorphic core complexes are exposures of deep crust exhumed in association with largely amagmatic extension. They form, and are exhumed, through relatively fast transport of middle and lower continental crust to the Earth s surface. During… …   Wikipedia

  • Prehnite-pumpellyite facies — The prehnite pumpellyite facies is a metamorphic facies typical of subseafloor alteration of the oceanic crust around mid ocean ridge spreading centres. It is a metamorphic grade transitional between zeolite facies and greenschist facies… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”