Branko Grünbaum


Branko Grünbaum

Branko Grünbaum (born 1929) is a Croatian-born mathematician and a professor emeritus at the University of Washington in Seattle. He received his Ph.D. in 1957 from Hebrew University of Jerusalem in Israel.MathGenealogy|id=26965] He has authored over 200 papers, mostly in discrete geometry, an area in which he is particularly well known for various meticulous classification theorems. His paper on line arrangements appears to have been the inspiration for a paper by N. G. de Bruijn which is generally held to have initiated the subject of quasiperiodic tilings (the most famous example of which is the Penrose tiling of the plane). This paper is also cited by the authors of a monograph on hyperplane arrangements as having inspired their research.

Grünbaum has also devised a multi-set generalisation of Venn diagrams. He is an editor and a frequent contributor to "Geombinatorics".

Grünbaum's classical monograph "Convex polytopes", first published in 1967, has become the main textbook on the subject. His monograph "Tilings and Patterns", coauthored with G. C. Shephard, helped to rejuvenate interest in this classic field, and has proved popular with nonmathematical audiences as well as with mathematicians.

In 2004, Gil Kalai and Victor Klee edited a special issue of "Discrete and Computational Geometry" in his honor, the "Grünbaum Festschrift". In 2005, Grünbaum was awarded the Leroy P. Steele Prize for Mathematical Exposition from the American Mathematical Society.

Grünbaum has supervised 17 Ph.D.s and currently has at least 66 mathematical "descendants".

elected publications

*Citation | last=Grünbaum | first=Branko | title = Convex polytopes | location=New York & London | publisher=Springer-Verlag | year=2003 | isbn=0-387-00424-6 | edition=2nd | editor1-first=Volker | editor1-last=Kaibel | editor2-first=Victor | editor2-last=Klee | editor2-link=Victor Klee | editor3-first=Günter M. | editor3-last =Ziegler | editor3-link = Günter M. Ziegler.
*

References

*

External links

* [http://www.math.washington.edu/~grunbaum/ Personal web page]


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Branko Grünbaum — 1975 Branko Grünbaum (* 12. Oktober 1929 in Osijek in Kroatien) ist ein israelischer Mathematiker, der sich mit diskreter Geometrie beschäftigt. Grünbaum begann 1948 das Studium der Mathematik an der Universität Zagreb und emigrierte 1949 nach… …   Deutsch Wikipedia

  • Grünbaum — ist der Familienname folgender Personen: Aaron Bär Grünbaum (1812–1893), deutscher Rabbiner Adolf Grünbaum (* 1923), Philosoph und Wissenschaftstheoretiker Albert Grünbaum (1869–1921, 1915 Umbenennung in A.S.F. Leyton (Albert Leyton)), britischer …   Deutsch Wikipedia

  • Grünbaum — is a German surname meaning green tree and may refer to:* Adolf Grünbaum (born 1923), German born philosopher of science * Branko Grünbaum, Croatian born mathematician * Fritz Grünbaum, Austrian cabaret artist, operetta and pop song writeree… …   Wikipedia

  • Zonoèdre — Un zonoèdre est un polyèdre convexe où chaque face est un polygone avec un centre de symétrie ou, de manière équivalente, une symétrie avec des rotations à 180°. Tout zonoèdre peut être décrit de manière équivalente comme la somme de Minkowski d… …   Wikipédia en Français

  • Liste der Biografien/Gru–Grz — Biografien: A B C D E F G H I J K L M N O P Q …   Deutsch Wikipedia

  • Anisohedral tiling — In geometry, a shape is said to be anisohedral if it admits a tiling, but no such tiling is isohedral (tile transitive); that is, in any tiling by that shape there are two tiles that are not equivalent under any symmetry of the tiling. A tiling… …   Wikipedia

  • Esseg — Osijek Peter und Paul Kirche im Zentrum der Stadt …   Deutsch Wikipedia

  • Essegg — Osijek Peter und Paul Kirche im Zentrum der Stadt …   Deutsch Wikipedia

  • Eszék — Osijek Peter und Paul Kirche im Zentrum der Stadt …   Deutsch Wikipedia

  • Convex polytope — A 3 dimensional convex polytope A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n dimensional space Rn.[1] Some authors use the terms convex polytope and convex… …   Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.