Nickelocene

Nickelocene
Nickelocene
Identifiers
CAS number 1271-28-9 YesY
ChEBI CHEBI:30679 YesY
RTECS number QR6500000
Properties
Molecular formula C10H10Ni
Molar mass 188.88 g/mol
Appearance Green crystals
Density  ? g/cm3, solid
Melting point

171-173 °C

Solubility in water insoluble
Structure
Coordination
geometry
D5h, D5d
Dipole moment 0 D
Hazards
EU classification Harmful Xn
R-phrases R20/21/22, R42/43
S-phrases S22, S24, S36/37, S45
NFPA 704
NFPA 704.svg
0
2
0
LD50 490 mg kg−1 (oral, rat)
600 mg kg−1 (oral, mouse)
Related compounds
Related compounds CoCp2, FeCp2
 YesY (verify) (what is: YesY/N?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)
Infobox references

Nickelocene is the organonickel compound with the formula Ni(η5-C5H5)2. Also known as bis(cyclopentadienyl)nickel or NiCp2, this bright green paramagnetic solid is of enduring academic interest,[1] although it yet has no practical applications.

Contents

Structure and bonding

Ni(C5H5)2 belongs to a group of organometallic compounds called metallocenes. Metallocenes usually adopt structures in which a metal ion is sandwiched between two parallel cyclopentadienyl rings. This structure is relevant to the solubility in organic solvents and volatility. In the solid-state, the molecule has D5h symmetry, wherein the two rings are eclipsed.

The Ni center has a formal 2+ charge, and the Cp rings are usually assigned as [cyclopentadienyl anion]]s (Cp-), related to cyclopentadiene by deprotonation. The structure is similar to ferrocene. In terms of its electronic structure, three pairs of d electrons on nickel are allocated to the three d orbitals involved in Ni - Cp bonding: dxy, dx2–y2, dz2. One of the two remaining d-electrons resides in each of the dyz and dxz orbitals, giving rise to the molecule's paramagnetism. With 20 valence electrons, nickelocene has the highest electron count of the transition metal metallocenes. Cobaltocene, Co(C5H5)2, is, however, a stronger reducing agent.

Preparation

Nickelocene was first prepared by E. O. Fischer in 1953, shortly after the discovery of ferrocene, the first metallocene compound.[2] It has been prepared in a one-pot reaction, by deprotonating cyclopentadiene with ethylmagnesium bromide, and adding anhydrous nickel(II) acetylacetonate.[3] A modern synthesis entails treatment of anhydrous sources of NiCl2 with sodium cyclopentadienyl:[4]

[Ni(NH3)6]Cl2 + 2 NaC5H5 → Ni(C5H5)2 + 2 NaCl + 6 NH3

Properties

Like many organometallic compounds, Ni(C5H5)2 does not tolerate extended exposure to air before noticeable decomposition.[5] Samples are typically handled with air-free techniques.

Most chemical reactions of nickelocene are characterized by its tendency to yield 18-electron products with loss or modification of one Cp ring.

Ni(C5H5)2 + 4 PF3 → Ni(PF3)4 + organic products

The reaction with secondary phosphines follows a similar pattern:

2 Ni(C5H5)2 + 2 PPh2H → [Ni2(PPh2)2(C5H5)2] + 2 C5H6

Nickelocene can be oxidized to the corresponding cation, which contains Ni(III).

Gaseous Ni(C5H5)2 decomposes to a Ni mirror upon contact with a hot surface, releasing the hydrocarbon ligands as gaseous coproducts. This process has been considered as a means of preparing Ni films.

References

  1. ^ Elschenbroich, C. ”Organometallics” (2006) Wiley-VCH: Weinheim. ISBN 978-3-29390-6
  2. ^ E. O. Fischer, W. Pfab (1952). "Zur Kristallstruktur der Di-Cyclopentadienyl-Verbindungen des zweiwertigen Eisens, Kobalts und Nickels". Z. Naturforsch. B 7: 377–379. 
  3. ^ Wilkinson, G.; Pauson, P. L.; Cotton, F. A. (1954). "Bis-cyclopentadienyl Compounds of Nickel and Cobalt". J. Am. Chem. Soc. 76: 1970–4. doi:10.1021/ja01636a080. 
  4. ^ Girolami, G. S.; Rauchfuss, T. B. and Angelici, R. J., Synthesis and Technique in Inorganic Chemistry, University Science Books: Mill Valley, CA, 1999.ISBN 0935702482
  5. ^ Anna Jaworska-Augustyniak, Jan Wojtczak (1979). "Charge-transfer complexes of cobaltocene and nickelocene with tetrachloromethane". Monatshefte für Chemie 110: 1113–1121. 

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • nickelocene — noun The nickel metallocene bis(cyclopentadienyl)nickel …   Wiktionary

  • Organonickel — chemistry is a branch of organometallic chemistry that deals with organic compounds feature nickel carbon bonds.[1][2] They are used as a catalyst, as a building block in organic chemistry and in chemical vapor deposition. Organonickel compounds… …   Wikipedia

  • Ferrocene — Chembox new ImageFileL1 = Ferrocene 2D.png ImageSizeL1 = 80 px ImageFileR1 = Ferrocene 3D balls B.png ImageSizeR1 = 120 px IUPACName = ferrocene, bis(η5 cyclopentadienyl)iron OtherNames = ferrocene, iron cyclopentadienyl Section1 = Chembox… …   Wikipedia

  • Cyclopentadienyl complex — Zirconocene dichloride, a cyclopentadienyl complex A cyclopentadienyl complex is a metal complex with one or more cyclopentadienyl groups (C5H5−, abbreviated as Cp−). Based on the type of bonding between the metals and the cyclopentadienyl]]… …   Wikipedia

  • Cobaltocene — IUPAC name …   Wikipedia

  • 18-Electron rule — The 18 electron rule is a rule of thumb used primarily in transition metal chemistry for characterizing and predicting the stability of metal complexes. Valence shells of a transition metal can accommodate 18 electrons: 2 in each of the five d… …   Wikipedia

  • Nickel — This article is about the chemical element. For other uses, see Nickel (disambiguation). cobalt ← nickel → copper ↑ Ni ↓ Pd …   Wikipedia

  • Cyclopentadiene — Cyclopentadiene …   Wikipedia

  • Nickel(II) chloride — Hexahydrate IUPAC name Nickel(II) ch …   Wikipedia

  • Cold finger — Cold fingers. A cold finger is a piece of laboratory equipment that is used to generate a localized cold surface. It is named for its resemblance to a finger as is a type of cold trap. Typically a cold finger is used in a sublimation apparatus,… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”