Clausius-Clapeyron relation

Clausius-Clapeyron relation

The Clausius-Clapeyron relation, named after Rudolf Clausius and Émile Clapeyron, is a way of characterizing the phase transition between two phases of matter, such as solid and liquid. It is commonly learned in class. On a pressure-temperature (P-T) diagram, the line separating the two phases is known as the coexistence curve. The Clausius-Clapeyron relation gives the slope of this curve. Mathematically,

:frac{mathrm{d}P}{mathrm{d}T} = frac{L}{T,Delta V}

where mathrm{d}P/mathrm{d}T is the slope of the coexistence curve, L is the latent heat, T is the temperature, and Delta V is the volume change of the phase transition.

Disambiguation

The generalized equation given in the opening of this article is sometimes called the Clapeyron equation, while a less general form is sometimes called the Clausius-Clapeyron equation. The less general form neglects the magnitude of the specific volume of the liquid (or solid) state relative to that of the gas state and also approximates the specific volume of the gas state via the ideal gas law.cite book |last=Wark |first=Kenneth |title=Thermodynamics |origyear=1966 |edition=5th |year=1988 |publisher=McGraw-Hill, Inc. |location=New York, NY |language=English |isbn=0-07-068286-0 |chapter=Generalized Thermodynamic Relationships] rp|509

Derivation

Using the state postulate, take the specific entropy, s, for a homogeneous substance to be a function of specific volume, v, and temperature, T.rp|508

:d s = frac{partial s}{partial v} d v + frac {partial s}{partial T} d T

During a phase change, the temperature is constant, sorp|508

:d s = frac{partial s}{partial v} d v.

Using the appropriate Maxwell relation givesrp|508

:d s = frac{partial P}{partial T} d v.

Since temperature and pressure are constant "during a phase change", the derivative of pressure with respect to temperature is not a function of the specific volume.cite web |url=http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/pvtsur.html |title=PvT Surface for a Substance which Contracts Upon Freezing |accessdate=2007-10-16 |author=Carl Rod Nave |year=2006 |work=HyperPhysics |publisher=Georgia State University |language=English] cite book |last=Çengel |first=Yunus A. |authorlink= |coauthors=Boles, Michael A. |title=Thermodynamics - An Engineering Approach |origyear=1989 |edition=3rd |series=McGraw-Hill Series in Mechanical Engineering |year=1998 |publisher=McGraw-Hill |location=Boston, MA. |language=English |isbn=0-07-011927-9] rp|57, 62 & 671 Thus the partial derivative may be changed into a total derivative and be factored out when taking an integral from one phase to another,rp|508

:s_2 - s_1 = frac{d P}{d T} (v_2 - v_1),:frac{d P}{d T} = frac {s_2 - s_1}{v_2 - v_1} = frac {Delta s}{Delta v}.::Delta is used as an operator to represent the change in the variable that follows it—final (2) minus initial (1)

For a closed system undergoing an internally reversible process, the first law is

:d u = delta q - delta w = T d s - P d v,.

Using the definition of specific enthalpy, h, and the fact that the temperature and pressure are constant, we haverp|508

:d u + P d v = d h = T ds Rightarrow ds = frac {d h}{T} Rightarrow Delta s = frac {Delta h}{T}.

After substitution of this result into the derivative of the pressure, one findscite web |url=http://www.chem.arizona.edu/~salzmanr/480a/480ants/clapeyro/clapeyro.html |title=Clapeyron and Clausius-Clapeyron Equations |accessdate=2007-10-11 |last=Salzman |first=William R. |date=2001-08-21 |work=Chemical Thermodynamics |publisher=University of Arizona |language=English |archiveurl=http://web.archive.org/web/20070607143600/http://www.chem.arizona.edu/~salzmanr/480a/480ants/clapeyro/clapeyro.html
archivedate=2007-07-07
] rp|508

:frac{d P}{d T} = frac {Delta h}{T Delta v} = frac {Delta H}{T Delta V} = frac {L}{T Delta V},

where the shift to capital letters indicates a shift to extensive variables. This last equation is called the Clausius-Clapeyron equation, though some thermodynamics texts just call it the Clapeyron equation, possibly to distinguish it from the approximation below.

When the transition is to a gas phase, the final specific volume can be many times the size of the initial specific volume. A natural approximation would be to replace Delta v with v_2. Furthermore, at low pressures, the gas phase may be approximated by the ideal gas law, so that v_2 = v_{gas} = R T / P, where R is the mass specific gas constant (forcing h and v to be mass specific). Thus,rp|509

:frac{d P}{d T} = frac {P Delta h}{T^2 R}.

This leads to a version of the Clausius-Clapeyron equation that is simpler to integrate:rp|509

:frac {d P}{P} = frac {Delta h}{R} frac {dT}{T^2},:ln P = - frac {Delta h}{R} frac {1}{T} + C, orrp|672:ln frac {P_2}{P_1} = frac {Delta h}{R} left ( frac {1}{T_1} - frac {1}{T_2} ight ).::C is a constant of integration

These last equations are useful because they relate saturation pressure and saturation temperature to the enthalpy of phase change, "without" requiring specific volume data. Note that in this last equation, the subscripts 1 and 2 correspond to different locations on the pressure versus temperature phase lines. In earlier equations, they corresponded to different specific volumes and entropies at the same saturation pressure and temperature.

Other Derivation

Suppose two phases, I and II, are in contact and at equilibrium with each other. Then the chemical potentials are related by mu_{I} = mu_{II}. Along the coexistence curve, we also have mathrm{d}mu_{I} = mathrm{d}mu_{II}. We now use the Gibbs-Duhem relationmathrm{d}mu = -smathrm{d}T + vmathrm{d}P, where s and v are, respectively, the entropy and volume per particle, to obtain

:-(s_I-s_{II}) mathrm{d}T + (v_I-v_{II}) mathrm{d}P = 0. ,

Hence, rearranging, we have

:frac{mathrm{d}P}{mathrm{d}T} = frac{s_I-s_{II{v_I-v_{II.

From the relation between heat and change of entropy in a reversible process δ"Q" = "T" d"S", we have that the quantity of heat added in the transformation is

:L= T (s_I-s_{II}). ,

Combining the last two equations we obtain the standard relation.

Applications

Chemistry and chemical engineering

The Clausius-Clapeyron equation for the liquid-vapor boundary may be used in either of two equivalent forms.:ln left(frac{P_2}{P_1} ight) = frac{Delta H_mathrm{vap{R}left(frac{1}{T_1} - frac{1}{T_2} ight)where
*T_1 and P_1 are a corresponding temperature (in kelvin or other absolute temperature units) and vapor pressure
*T_2 and P_2 are the corresponding temperature and pressure at another point
*Delta H_mathrm{vap} is the molar enthalpy of vaporization
*R is the gas constant (8.314 J mol-1K-1)

This can be used to predict the temperature at a certain pressure, given the temperature at another pressure, or vice versa. Alternatively, if the corresponding temperature and pressure is known at two points, the enthalpy of vaporization can be determined.

The equivalent formulation, in which the values associated with one "P","T" point are combined into a constant (the constant of integration as above), is: ln P = -frac{Delta H_mathrm{vap{RT}+C

For instance, if the "p","T" values are known for a series of data points along the phase boundary, then the enthalpy of vaporization may be determined from a plot of ln P against 1/T.

Notes:
* As in the derivation above, the enthalpy of vaporization is assumed to be constant over the pressure/temperature range considered
* Equivalent expressions for the solid-vapor boundary are found by replacing the molar enthalpy of vaporization by the molar enthalpy of sublimation, Delta H_mathrm{sub}

Meteorology

In meteorology, a specific derivation of the Clausius-Clapeyron equation is used to describe dependence of saturated water vapor pressure on temperature. This is similar to its use in chemistry and chemical engineering.

It plays a crucial role in the current debate on climate change because its solution predicts exponential behavior of saturation water vapor pressure (and, therefore water vapor concentration) as a function of temperature. In turn, because water vapor is a greenhouse gas, it might lead to further increase in the sea surface temperature leading to runaway greenhouse effect. Debate on iris hypothesis and intensity of tropical cyclones dependence on temperature depends in part on “Clausius-Clapeyron” solution.

Clausius-Clapeyron equations is given for typical atmospheric conditions as

: frac{mathrm{d}e_s}{mathrm{d}T} = frac{L_v e_s}{R_v T^2}

where:
* e_s is saturation water vapor pressure
*T is a temperature
* L_v is latent heat of evaporation
*R_v is water vapor gas constant. One can solve this equation to give [ [http://dx.doi.org/10.1175/1520-0493(1980)108%3C1046:TCOEPT%3E2.0.CO;2 American Meteorological Society - The Computation of Equivalent Potential Temperature] ]

: e_s(T)= 6.112 exp left( frac{17.67 T}{T+243.5} ight)

where:
* e_s(T) is in hPa (mbar)
* T is in degrees Celsius. Thus, neglecting the weak variation of ("T"+243.5) at normal temperatures, one observes that saturation water vapor pressure changes exponentially with T.

Example

One of the uses of this equation is to determine if a phase transition will occur in a given situation. Consider the question of how much pressure is needed to melt ice at a temperature {Delta T} below 0 °C. We can assume : {Delta P} = frac{L}{T,Delta V} {Delta T} and substituting in : L = 3.34e|5 J/kg (latent heat of water),: T = 273 K (absolute temperature), and: Delta V = -9.05e|-5 m³/kg (change in volume from solid to liquid), we obtain :frac{Delta P}{Delta T} = -13.1 MPa/°C.

To provide a rough example of how much pressure this is, to melt ice at -7 °C (the temperature many ice skating rinks are set at) would require balancing a small car (mass = 1000 kg [cite web|url=http://hypertextbook.com/facts/2000/YanaZorina.shtml|title=Mass of a Car|last=Zorina|first=Yana|year=2000|work=The Physics Factbook] ) on a thimble (area = 1 cm²).

ee also

*Van't Hoff equation

References

Bibliography

* M.K. Yau and R.R. Rogers, "Short Course in Cloud Physics, Third Edition", published by Butterworth-Heinemann, January 1, 1989, 304 pages. EAN 9780750632157 ISBN 0-7506-3215-1

* J.V. Iribarne and W.L. Godson, "Atmospheric Thermodynamics", published by D. Reidel Publishing Company, Dordrecht, Holland, 1973, 222 pages

* H.B. Callen, "Thermodynamics and an Introduction to Thermostatistics", published by Wiley, 1985. ISBN 0-471-86256-8


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Clausius–Clapeyron relation — The Clausius–Clapeyron relation, named after Rudolf Clausius and Benoît Paul Émile Clapeyron, who defined it sometime after 1834, is a way of characterizing a discontinuous phase transition between two phases of matter. On a pressure–temperature… …   Wikipedia

  • Clausius-Clapeyron — Formule de Clapeyron Pour les articles homonymes, voir Clapeyron. La formule de Clapeyron ou relation de Clausius Clapeyron est une relation permettant de définir l évolution de la pression d équilibre en fonction de la température d équilibre au …   Wikipédia en Français

  • Equation de Clausius-Clapeyron — Formule de Clapeyron Pour les articles homonymes, voir Clapeyron. La formule de Clapeyron ou relation de Clausius Clapeyron est une relation permettant de définir l évolution de la pression d équilibre en fonction de la température d équilibre au …   Wikipédia en Français

  • Équation de Clausius-Clapeyron — Formule de Clapeyron Pour les articles homonymes, voir Clapeyron. La formule de Clapeyron ou relation de Clausius Clapeyron est une relation permettant de définir l évolution de la pression d équilibre en fonction de la température d équilibre au …   Wikipédia en Français

  • Équation de clausius-clapeyron — Formule de Clapeyron Pour les articles homonymes, voir Clapeyron. La formule de Clapeyron ou relation de Clausius Clapeyron est une relation permettant de définir l évolution de la pression d équilibre en fonction de la température d équilibre au …   Wikipédia en Français

  • Rudolf Clausius — Clausius redirects here. For the lunar crater, see Clausius (crater). Rudolf Clausius Born 2 January 1822( …   Wikipedia

  • Benoît Paul Émile Clapeyron — Benoit Paul Émile Clapeyron Benoît Paul Émile Clapeyron (26 February 1799 – 28 January 1864) was a French engineer and physicist, one of the founders of thermodynamics. Contents …   Wikipedia

  • Clausius theorem — Thermodynamics …   Wikipedia

  • Formule De Clapeyron — Pour les articles homonymes, voir Clapeyron. La formule de Clapeyron ou relation de Clausius Clapeyron est une relation permettant de définir l évolution de la pression d équilibre en fonction de la température d équilibre au cours d un… …   Wikipédia en Français

  • Formule de clapeyron — Pour les articles homonymes, voir Clapeyron. La formule de Clapeyron ou relation de Clausius Clapeyron est une relation permettant de définir l évolution de la pression d équilibre en fonction de la température d équilibre au cours d un… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”