Weil–Châtelet group

Weil–Châtelet group

In mathematics, particularly in arithmetic geometry, the Weil-Châtelet group of an abelian variety "A" defined over a field "K" is the abelian group of principal homogeneous spaces for "A", defined over "K". It is named for André Weil, who introduced the general group operation in it, and F. Châtelet. It plays a basic role in the arithmetic of abelian varieties, in particular for elliptic curves, because of its connection with infinite descent.

It can be defined directly from Galois cohomology, as "H"1("G""K","A"), where "G""K" is the absolute Galois group of "K". It is of particular interest for local fields and global fields, such as algebraic number fields. For "K" a finite field, it was proved that the group is trivial.

The Tate-Shafarevich group, named for John Tate and Igor Shafarevich, of an abelian variety "A" defined over a number field "K" consists of the elements of the Weil-Châtelet group that become trivial in all of the completions of "K" (i.e. the p-adic fields obtained from "K", as well as its real and complex completions). Thus, in terms of Galois cohomology, in can be written as

:igcap_vmathrm{ker}(H^1(G_K,A) ightarrow H^1(G_{K_v},A_v)).

It is often denoted Ш("A"/"K"), where Ш is the Cyrillic letter "Sha", for Shafarevich.

Geometrically, the non-trivial elements of the Tate-Shafarevich group can be thought of as the homogeneous spaces of "A" that have "K"v-rational points for every place "v" of "K", but no "K"-rational point.The Tate-Shafarevich group is conjectured to be finite; the first results on this were obtained by Karl Rubin.

The Selmer group, named after Ernst S. Selmer, of "A" with respect to an isogeny "f":"A"→"B" of abelian varieties is a related group which can be defined in terms of Galois cohomology as

:mathrm{Se}ell^{(f)}(A/K)=igcap_vmathrm{ker}(H^1(G_K,mathrm{ker}(f)) ightarrow H^1(G_K,A_v [f] ))

where "A"v ["f"] denotes the "f"-torsion of "A"v. Geometrically, the principal homogeneous spaces coming from elements of the Selmer group have "K"v-rational points for all places "v" of "K". The Selmer group is finite. This has implications to the conjecture that the Tate-Shafarevich group is finite due to the following exact sequence

:0→"B"("K")/"f"("A"("K"))→Sel(f)("A"/"K")→Ш("A"/"K") ["f"] →0.

Ralph Greenberg has generalized the notion of Selmer group to more general "p"-adic Galois representations and to "p"-adic variations of motives in the context of Iwasawa theory.



Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Weil group — A Weil group (named after André Weil) could be *The Weil group of a class formation or local field or global field in class field theory. *The Weil Châtelet group. *The Mordell Weil group of an abelian variety.It should not be confused with *The… …   Wikipedia

  • André Weil — Infobox Scientist name = André Weil image width = caption = birth date = birth date|1906|5|6 birth place = Nantes death date = death date and age|1998|8|6|1906|5|6 death place = field = Mathematics work institutions = Lehigh University… …   Wikipedia

  • Séminaire Nicolas Bourbaki (1950–1959) — Continuation of the Séminaire Nicolas Bourbaki programme, for the 1950s. 1950/51 series *33 Armand Borel, Sous groupes compacts maximaux des groupes de Lie, d après Cartan, Iwasawa et Mostow (maximal compact subgroups) *34 Henri Cartan, Espaces… …   Wikipedia

  • Class formation — In mathematics, a class formation is a structure used to organize the various Galois groups and modules that appear in class field theory. They were invented by Emil Artin and John Tate. Contents 1 Definitions 2 Examples of class formations 3 The …   Wikipedia

  • List of mathematics articles (W) — NOTOC Wad Wadge hierarchy Wagstaff prime Wald test Wald Wolfowitz runs test Wald s equation Waldhausen category Wall Sun Sun prime Wallenius noncentral hypergeometric distribution Wallis product Wallman compactification Wallpaper group Walrasian… …   Wikipedia

  • Système d'Euler — En mathématiques, un système d Euler est un objet technique dans la théorie des modules de Galois, mis en évidence aux environ de 1990 par Victor Kolyvagin (en) dans son travail sur les points de Heegner (en) sur les courbes elliptiques …   Wikipédia en Français

  • Liste von Automobilmarken — Automobilmarken, kurz Automarken, sind die Handelsnamen, unter denen Automobil Hersteller Fahrzeuge vertreiben. Aufgelistet werden Hersteller von Pkw und Rennwagen, die Automobile gebaut haben, bauen oder bauen wollten. Nutzfahrzeuge werden in… …   Deutsch Wikipedia

  • Polyamory — Das Herz mit dem Zeichen der Unendlichkeit als Symbol für Polyamory Polyamory (englisches Kunstwort aus griechisch πολύς polýs „viel, mehrere“ und lateinisch amor „Liebe“, oft auch eingedeutscht Polyamorie geschrieben) ist ein Oberbegriff für die …   Deutsch Wikipedia

  • FR-75 — Paris …   Deutsch Wikipedia

  • Lutezia — Paris …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.