Membrane emulsification

Membrane emulsification

Membrane emulsification (ME) is a relatively novel technique for producing all types of single and multiple emulsions (o/w, w/o, w/w, w/o/w, o/w/o, m/w, s/o/w), e.g. for DDS (drug delivery system), solid micro carriers for encapsulation of drug or nutrient, solder particles for surface mount technology, mono dispersed polymer microspheres (for analytical column packing, enzyme carriers, liquid crystal display spacers, toner core particles).[1][2][3][4][5][6] Membrane emulsification was introduced by Nakashima and Shimizu in the late 1980s in Japan.[7][8]

Schematic figure of cross-flow membrane emulsification

Contents

Description

In this process, the dispersed phase is forced through the pores of a microporous membrane directly into the continuous phase. Emulsified droplets are formed and detached at the end of the pores with a drop-by-drop mechanism. The advantages of membrane emulsification over conventional emulsification processes are that it enables to obtain very fine emulsions of controlled droplet sizes and narrow droplet size distributions. Successful emulsification can be carried out with much less consumption of emulsifier and energy, and because of the lowered shear stress effect, membrane emulsification allows the use of shear-sensitive ingredients, such as starch and proteins.[9] The membrane emulsification process is generally carried out in cross-flow (continuous or batch) mode or in a stirred cell (batch).

Applications

The method of membrane emulsification has already been applied in some areas of food-, chemical-, electronic and medical industry.[10][11][12][13] For membrane emulsification, several types of membranes, e.g. ceramic, polymeric, metallic and glass are tested.[14][15] The Shirasu porous-glass (SPG) membrane was developed by Nakashima and Shimizu as well.

Modeling

Since the process is quite novel, the modeling of the membrane emulsification operation is an interesting topic.[16][17]

Future

A major limiting factor of the ME is the low dispersed phase flux. In order to expand the industrial applications the productivity of the method have to be increased. Research aimed at solving this problem and tackle other problems like membrane fouling.[18][19]

References

  1. ^ Shimizu, M.; K. Torigoe, I. Akazaki, T. Nakashima (2001). "Preparation of monodispersed solder microspheres by membrane emulsification". Proceedings of the 36th SPG Forum. 
  2. ^ Toorisaka, E.; H. Ono, K. Arimori, N. Kamiya, M. Goto (2003). "Hypoglycemic effect of surfactant-coated insulin solubilized in a novel solid-in-oil-in-water (S/O/W) emulsion". International Journal of Pharmaceutics 252 (1–2): 271–274. doi:10.1016/S0378-5173(02)00674-9. PMID 12550804. 
  3. ^ Hosoya, K.; K. Yoshizako, K. Kimata and N. Tanaka (1997). "Chromatographic properties of uniformly sized macroporous polymer particles prepared using SPG emulsification". Chromatography - Journal of Separation and Detection Sciences 18 (4.): 226–227. 
  4. ^ Omi, Shinzo; Kazuyoshi Kaneko, Akira Nakayama, Ken'ichi Katami, Tetsuya Taguchi, Mamoru Iso, Masatoshi Nagai, Guang-Hui Ma (1997). "Application of porous microspheres prepared by SPG (Shirasu porous glass) emulsification as immobilizing carriers of glucoamylase (GluA)". Journal of Applied Polymer Science 65 (13): 2655–2664. doi:10.1002/(SICI)1097-4628(19970926)65:13<2655::AID-APP7>3.0.CO;2-A. 
  5. ^ Higashi, S.; Shimizu M., Nakashima T., Iwata K., Uchiyama F., Taneto S., Tamura S., Setoguchi T. (1995). "Arterial injection chemotherapy for hepatocellular carcinoma using monodispersed poppy seed oil microdroplets containing fine aqueous vesicles of epirubicin – initial medical application of a membrane emulsification technique". Cancer 75 (6): 1245–54. doi:10.1002/1097-0142(19950315)75:6<1245::AID-CNCR2820750606>3.0.CO;2-U. PMID 7882276. 
  6. ^ Huang, B.-R; Wu C.-H.; Sheu R.-F.; Ha Y.-K.; Song H.-S.; Lee H.-J.; Kim J.-H (2000). "Preparation of core particles for toner application by membrane emulsification". Colloids and Surfaces A: Physicochemical and Engineering Aspects 162 (1): 289–293. doi:10.1016/S0927-7757(99)00235-6. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFR-3YDGBWH-1X&_user=1634558&_coverDate=03%2F15%2F2000&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000054034&_version=1&_urlVersion=0&_userid=1634558&md5=8a6427fdfc25d39d9a76785951b46983&searchtype=a. 
  7. ^ Nakashima, T.; and Shimizu M. (1986). "Porous glass from calcium alumino boro-silicate glass". Ceramics 21: 408. 
  8. ^ Nakashima, T.; Shimizu M. and Kukizaki M. (1991). "Membrane Emulsification, Operation Manual,". Lndustrial Research Institute of Miyazaki Prefecture, Miyazaki, Japan. 
  9. ^ Vladisavljevic, G. T.; Brösel S., and Schubert H. (2000). "Preparation of Water-in-Oil Emulsions Using Microporous Polypropylene Hollow Fibres: Conditions for Producing Small Uniform Droplets". Chemical Papers 54 (6a): 383–388. http://www.chempap.org/papers/546aa383.pdf. 
  10. ^ Charcosset, Catherine (1 June 2009). [doi:10.1016/j.jfoodeng.2008.11.017 "Preparation of emulsions and particles by membrane emulsification for the food processing industry"]. Journal of Food Engineering 92 (3): 241–249. doi:10.1016/j.jfoodeng.2008.11.017. doi:10.1016/j.jfoodeng.2008.11.017. 
  11. ^ Nakashima, T; Shimizu, Masataka; Kukizaki, Masato (6 December 2000). "Particle control of emulsion by membrane emulsification and its applications". Advanced Drug Delivery Reviews 45 (1): 47–56. doi:10.1016/S0169-409X(00)00099-5. PMID 11104896. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T3R-41V29N8-4&_user=1634558&_coverDate=12%2F06%2F2000&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1656133857&_rerunOrigin=google&_acct=C000054034&_version=1&_urlVersion=0&_userid=1634558&md5=250ba5e1c8078259a585dc471a1242f5&searchtype=a. 
  12. ^ Akamatsu, Kazuki; Chen, Wei, Suzuki, Yukimitsu, Ito, Taichi, Nakao, Aiko, Sugawara, Takashi, Kikuchi, Ryuji, Nakao, Shin-ichi (21 September 2010). "Preparation of Monodisperse Chitosan Microcapsules with Hollow Structures Using the SPG Membrane Emulsification Technique". Langmuir 26 (18): 14854–14860. doi:10.1021/la101967u. PMID 20718480. http://pubs.acs.org/doi/abs/10.1021/la101967u. 
  13. ^ GIORNO, L; PIACENTINI, E, MAZZEI, R, DRIOLI, E (5 June 2008). "Membrane emulsification as a novel method to distribute phase-transfer biocatalysts at the oil/water interface in bioorganic reactions". Journal of Membrane Science 317 (1–2): 19–25. doi:10.1016/j.memsci.2007.07.016. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TGK-4P77837-1&_user=1634558&_coverDate=06%2F05%2F2008&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1656142128&_rerunOrigin=google&_acct=C000054034&_version=1&_urlVersion=0&_userid=1634558&md5=c24d22ebb4c092dc07738b3d60fb8efb&searchtype=a. 
  14. ^ Schröder, V (1999). "Production of emulsions using microporous, ceramic membranes". Colloids and Surfaces A: Physicochemical and Engineering Aspects 152 (1–2): 103–109. doi:10.1016/S0927-7757(98)00688-8. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFR-3WJ7TVN-H&_user=1634558&_coverDate=07%2F15%2F1999&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1656141647&_rerunOrigin=google&_acct=C000054034&_version=1&_urlVersion=0&_userid=1634558&md5=3e901313aab286c4a7aa7cd6d8ab780b&searchtype=a. 
  15. ^ JING, W; WU, J, JIN, W, XING, W, XU, N (10 May 2006). "Monodispersed W/O emulsion prepared by hydrophilic ceramic membrane emulsification". Desalination 191 (1–3): 219–222. doi:10.1016/j.desal.2005.07.024. http://www.desline.com/articoli/7214.pdf. 
  16. ^ DELUCA, G; DIMAIO, F, DIRENZO, A, DRIOLI, E (1 July 2008). "Droplet detachment in cross-flow membrane emulsification: Comparison among torque- and force-based models". Chemical Engineering and Processing: Process Intensification 47 (7): 1150–1158. doi:10.1016/j.cep.2007.03.010. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFH-4NDMN5G-1&_user=1634558&_coverDate=07%2F31%2F2008&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1656152355&_rerunOrigin=google&_acct=C000054034&_version=1&_urlVersion=0&_userid=1634558&md5=8889328576d95341d7639713cc438777&searchtype=a. 
  17. ^ Timgren, Anna; Trägårdh, Gun, Trägårdh, Christian (1 February 2010). "A model for drop size prediction during cross-flow emulsification". Chemical Engineering Research and Design 88 (2): 229–238. doi:10.1016/j.cherd.2009.08.005. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B8JGF-4X6VB47-1&_user=1634558&_coverDate=02%2F28%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1656150894&_rerunOrigin=google&_acct=C000054034&_version=1&_urlVersion=0&_userid=1634558&md5=686fa55135439382cd46745483a701cc&searchtype=a. 
  18. ^ Koris, Andras; Piacentini, Emma, Vatai, Gyula, Bekassy-Molnar, Erika, Drioli, Enrico, Giorno, Lidietta (19 January 2011). "Investigation on the effects of a mechanical shear-stress modification method during cross-flow membrane emulsification". Journal of Membrane Science 371: 28–36. doi:10.1016/j.memsci.2011.01.005. 
  19. ^ Holdich, Richard G.; Dragosavac, Marijana M., Vladisavljević, Goran T., Kosvintsev, Serguei R. (21 April 2010). "Membrane Emulsification with Oscillating and Stationary Membranes". Industrial & Engineering Chemistry Research 49 (8): 3810–3817. doi:10.1021/ie900531n. 


External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Microbial enhanced oil recovery — (MEOR) is a biological based technology consisting in manipulating function or structure, or both, of microbial environments existing in oil reservoirs. The ultimate aim of MEOR is to improve the recovery of oil entrapped in porous media while… …   Wikipedia

  • Glycerophospholipid — Glycerophospholipids or phosphoglycerides are glycerol based phospholipids. They are the main component of biological membranes.tructuresThe term glycerophospholipid signifies any derivative of sn glycero 3 phosphoric acid that contains at least… …   Wikipedia

  • egg — egg1 eggless, adj. eggy, adj. /eg/, n. 1. the roundish reproductive body produced by the female of certain animals, as birds and most reptiles, consisting of an ovum and its envelope of albumen, jelly, membranes, egg case, or shell, according to… …   Universalium

  • Coenzyme Q10 — IUPAC name 2 [(2E,6E,10E,14E,18E,22E,26E,30E,34E) 3,7,11,15,19,23,27,31,35,39 …   Wikipedia

  • Deoxycholic acid — IUPAC name (3α,​5β,​12α,​20R) ​3,​12 ​dihydroxycholan ​24 ​oic acid …   Wikipedia

  • Bile — is a yellow green fluid that is made by the liver, stored in the gallbladder and passes through the common bile duct into the duodenum where it helps digest fat. The principal components of bile are cholesterol, bile salts, and the pigment… …   Medical dictionary

  • Enterocyte — Enterocytes, or intestinal absorptive cells, are simple columnar epithelial cells found in the small intestines and colon. A glycocalyx surface coat contains digestive enzymes. Microvilli on the apical surface increase surface area for the… …   Wikipedia

  • Tensioactif — Un tensioactif ou agent de surface est un composé qui modifie la tension superficielle entre deux surfaces. Les composés tensioactifs sont des molécules amphiphiles, c est à dire qu elles présentent deux parties de polarité différente, l une… …   Wikipédia en Français

  • PROTÉINES — Les macromolécules jouent un rôle fondamental dans les processus biologiques. Les plus importantes d’entre elles sont les protéines, molécules fonctionnelles, et les acides nucléiques, molécules informationnelles. La complexité et la labilité des …   Encyclopédie Universelle

  • Sodium tripolyphosphate — Chembox new ImageFile=sodium tripolyphosphate.png ImageSize=200px IUPACName=sodium triphosphate OtherNames= Section1= Chembox Identifiers CASNo= 7758 29 4 PubChem=517047 SMILES= [O ] P(=O)( [O ] )OP(=O)( [O ] )OP(=O)( [O ] ) [O ] . [Na+] . [Na+] …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”