Nonlinear eigenproblem

Nonlinear eigenproblem

A nonlinear eigenproblem is a generalization of an ordinary eigenproblem to equations that depend nonlinearly on the eigenvalue. Specifically, it refers to equations of the form:

A(\lambda) \mathbf{x} = 0 , \,

where x is a vector (the nonlinear "eigenvector") and A is a matrix-valued function of the number λ (the nonlinear "eigenvalue"). (More generally, A(λ) could be a linear map, but most commonly it is a finite-dimensional, usually square, matrix.) A is usually required to be a holomorphic function of λ (in some domain).

For example, an ordinary linear eigenproblem B\mathbf{v} = \lambda \mathbf{v}, where B is a square matrix, corresponds to A(λ) = B − λI, where I is the identity matrix.

One common case is where A is a polynomial matrix, which is called a polynomial eigenvalue problem. In particular, the specific case where the polynomial has degree two is called a quadratic eigenvalue problem, and can be written in the form:

A(\lambda) \mathbf{x} = ( A_2 \lambda^2 + A_1 \lambda + A_0) \mathbf{x} =  0 , \,

in terms of the constant square matrices A0,1,2. This can be converted into an ordinary linear generalized eigenproblem of twice the size by defining a new vector \mathbf{y} = \lambda \mathbf{x}. In terms of x and y, the quadratic eigenvalue problem becomes:

\begin{pmatrix} -A_0 & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} =  \lambda
\begin{pmatrix} A_1 & A_2 \\ I & 0 \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}
,

where I is the identity matrix. More generally, if A is a matrix polynomial of degree d, then one can convert the nonlinear eigenproblem into a linear (generalized) eigenproblem of d times the size.

Besides converting them to ordinary eigenproblems, which only works if A is polynomial, there are other methods of solving nonlinear eigenproblems based on the Jacobi-Davidson algorithm or based on Newton's method (related to inverse iteration).

References

  • Françoise Tisseur and Karl Meerbergen, "The quadratic eigenvalue problem," SIAM Review 43 (2), 235-286 (2001).
  • Gene H. Golub and Henk A. van der Vorst, "Eigenvalue computation in the 20th century," Journal of Computational and Applied Mathematics 123, 35-65 (2000).
  • Philippe Guillaume, "Nonlinear eigenproblems," SIAM J. Matrix. Anal. Appl. 20 (3), 575-595 (1999).
  • Axel Ruhe, "Algorithms for the nonlinear eigenvalue problem," SIAM Journal on Numerical Analysis 10 (4), 674-689 (1973).

Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • List of mathematics articles (N) — NOTOC N N body problem N category N category number N connected space N dimensional sequential move puzzles N dimensional space N huge cardinal N jet N Mahlo cardinal N monoid N player game N set N skeleton N sphere N! conjecture Nabla symbol… …   Wikipedia

  • Eigenvalue, eigenvector and eigenspace — In mathematics, given a linear transformation, an Audio|De eigenvector.ogg|eigenvector of that linear transformation is a nonzero vector which, when that transformation is applied to it, changes in length, but not direction. For each eigenvector… …   Wikipedia

  • Eigenvalues and eigenvectors — For more specific information regarding the eigenvalues and eigenvectors of matrices, see Eigendecomposition of a matrix. In this shear mapping the red arrow changes direction but the blue arrow does not. Therefore the blue arrow is an… …   Wikipedia

  • Delay differential equation — In mathematics, delay differential equations (DDEs) are a type of differential equation in which the derivative of the unknown function at a certain time is given in terms of the values of the function at previous times. A general form of the… …   Wikipedia

  • Matrix pencil — If are complex matrices for some nonnegative integer l, and (the zero matrix), then the matrix pencil of degree l is the matrix valued function defined on the complex numbers A particular case is a linear matrix pencil …   Wikipedia

  • Quadratic eigenvalue problem — In mathematics, the quadratic eigenvalue problem [F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAMRev., 43 (2001), pp. 235–286.] (QEP) , is to find scalar eigenvalues lambda,, left eigenvectors y, and right eigenvectors x,… …   Wikipedia

  • Airy wave theory — In fluid dynamics, Airy wave theory (often referred to as linear wave theory) gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”